Learning Visual Odometry with a Convolutional Network
نویسندگان
چکیده
We present an approach to predicting velocity and direction changes from visual information (”visual odometry”) using an end-to-end, deep learning-based architecture. The architecture uses a single type of computational module and learning rule to extract visual motion, depth, and finally odometry information from the raw data. Representations of depth and motion are extracted by detecting synchrony across time and stereo channels using network layers with multiplicative interactions. The extracted representations are turned into information about changes in velocity and direction using a convolutional neural network. Preliminary results show that the architecture is capable of learning the resulting mapping from video to egomotion.
منابع مشابه
Deep Auxiliary Learning for Visual Localization and Odometry
Localization is an indispensable component of a robot’s autonomy stack that enables it to determine where it is in the environment, essentially making it a precursor for any action execution or planning. Although convolutional neural networks have shown promising results for visual localization, they are still grossly outperformed by state-of-the-art local feature-based techniques. In this work...
متن کاملDeepVO: A Deep Learning approach for Monocular Visual Odometry
Deep Learning based techniques have been adopted with precision to solve a lot of standard computer vision problems, some of which are image classification, object detection and segmentation. Despite the widespread success of these approaches, they have not yet been exploited largely for solving the standard perception related problems encountered in autonomous navigation such as Visual Odometr...
متن کاملLearning-based Image Enhancement for Visual Odometry in Challenging HDR Environments
One of the main open challenges in visual odometry (VO) is the robustness to difficult illumination conditions or high dynamic range (HDR) environments. The main difficulties in these situations come from both the limitations of the sensors and the inability to perform a successful tracking of interest points because of the bold assumptions in VO, such as brightness constancy. We address this p...
متن کاملSqueezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation
The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, lo...
متن کاملDeep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detecti...
متن کامل